Search results for "QUANTUM GROUPS"

showing 4 items of 4 documents

The quantum chiral Minkowski and conformal superspaces

2010

We give a quantum deformation of the chiral super Minkowski space in four dimensions as the big cell inside a quantum super Grassmannian. The quantization is performed in such way that the actions of the Poincar\'e and conformal quantum supergroups on the quantum Minkowski and quantum conformal superspaces are presented.

PhysicsHigh Energy Physics - TheoryGeneral MathematicsGeneral Physics and AstronomyFísicaFOS: Physical sciencesConformal mapMathematical Physics (math-ph)QUANTUM GROUPSQuantization (physics)General Relativity and Quantum CosmologySuper Minkowski spaceHigh Energy Physics - Theory (hep-th)GrassmannianMinkowski spaceMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)QuantumSUPERSYMMETRYMathematical PhysicsMathematical physics
researchProduct

On Chiral Quantum Superspaces

2011

We give a quantum deformation of the chiral Minkowski superspace in 4 dimensions embedded as the big cell into the chiral conformal superspace. Both deformations are realized as quantum homogeneous superspaces: we deform the ring of regular functions together with a coaction of the corresponding quantum supergroup.

PhysicsRing (mathematics)High Energy Physics::LatticeConformal mapSupersymmetryQUANTUM GROUPSSuperspaceGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryTheoretical physicsNonlinear Sciences::Exactly Solvable and Integrable SystemsMathematics::Quantum AlgebraQuantum mechanicsMinkowski spaceAffine varietySUPERSYMMETRYSupergroupQuantum
researchProduct

Jerarquies de models sigma: aplicacions a teories de Supergravetat i a teories conformes

2012

207 páginas. Tesis Doctoral del Departamento de Física Teórica, de la Universidad de Valencia. Fecha de lectura: 5 octubre 2012.

S-expansionscoset spacesquantum groupsUNESCO::FÍSICA::Física Teórica:MATEMÁTICAS::Álgebra::Grupos generalidades [UNESCO]UNESCO::MATEMÁTICAS::Álgebra::Grupos generalidades:FÍSICA::Física Teórica [UNESCO]quantum groups; coset spaces; semigroups; S-expansionssemigroups
researchProduct

Topological Hopf algebras, quantum groups and deformation quantization

2003

After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologies on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities and provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described

[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]quantum groups[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]FOS: Physical sciences[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG]topological vector spacesMathematical Physics (math-ph)[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]deformation quantizationMathematics - Symplectic GeometryHopf algebras54C40 14E20 (primary) 46E25 20C20 (secondary)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Quantum Algebra (math.QA)Symplectic Geometry (math.SG)Mathematical Physics
researchProduct